yaoxi-std 的博客

$\text{开}\mathop{\text{卷}}\limits^{ju\check{a}n}\text{有益}$

0%

P4341 [BJWC2010] 外星联络

P4341 [BJWC2010] 外星联络

题面

题目链接

解法

没初始化$log_2$数组,但过了样例。

注意到使用后缀数组排序后,可以比较方便地按照字典序枚举子串。具体地,对于后缀$s[sa[i]…n]$,按照顺序枚举子串$s[sa[i]+he[i]…n]$即可。

注意到可以ST表维护LCS,并二分出每个子串的出现次数。于是这题变成了SA模版题。

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/**
* @file: P4341.cpp
* @author: yaoxi-std
* @url: https://www.luogu.com.cn/problem/P4341
*/
// #pragma GCC optimize ("O2")
// #pragma GCC optimize ("Ofast", "inline", "-ffast-math")
// #pragma GCC target ("avx,sse2,sse3,sse4,mmx")
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define resetIO(x) \
freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout)
#define debug(fmt, ...) \
fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__)
template <class _Tp>
inline _Tp& read(_Tp& x) {
bool sign = false;
char ch = getchar();
long double tmp = 1;
for (; !isdigit(ch); ch = getchar())
sign |= (ch == '-');
for (x = 0; isdigit(ch); ch = getchar())
x = x * 10 + (ch ^ 48);
if (ch == '.')
for (ch = getchar(); isdigit(ch); ch = getchar())
tmp /= 10.0, x += tmp * (ch ^ 48);
return sign ? (x = -x) : x;
}
template <class _Tp>
inline void write(_Tp x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar((x % 10) ^ 48);
}
const int MAXN = 3e3 + 10;
const int LOGN = 15;
const int INF = 0x3f3f3f3f3f3f3f3f;
struct SuffixArray {
int n, sa[MAXN], rk[MAXN], tp[MAXN], ht[MAXN], he[MAXN];
void radix_sort(int m) {
static int buc[MAXN];
for (int i = 0; i <= m; ++i)
buc[i] = 0;
for (int i = 1; i <= n; ++i)
buc[rk[i]]++;
for (int i = 1; i <= m; ++i)
buc[i] += buc[i - 1];
for (int i = n; i >= 1; --i)
sa[buc[rk[tp[i]]]--] = tp[i];
}
void init(int n, char* s) {
this->n = n;
int m = 100;
for (int i = 1; i <= n; ++i)
rk[i] = s[i] - '0' + 1, tp[i] = i;
radix_sort(m);
for (int w = 1, p = 0; p < n; m = p, w <<= 1) {
p = 0;
for (int i = 1; i <= w; ++i)
tp[++p] = n - w + i;
for (int i = 1; i <= n; ++i)
if (sa[i] > w)
tp[++p] = sa[i] - w;
radix_sort(m);
copy(rk + 1, rk + n + 1, tp + 1);
rk[sa[1]] = p = 1;
for (int i = 2; i <= n; ++i) {
if (tp[sa[i - 1]] == tp[sa[i]] && tp[sa[i - 1] + w] == tp[sa[i] + w])
rk[sa[i]] = p;
else
rk[sa[i]] = ++p;
}
}
for (int i = 1, k = 0; i <= n; ++i) {
if (k)
k--;
while (s[i + k] == s[sa[rk[i] - 1] + k])
k++;
ht[i] = k;
}
for (int i = 1; i <= n; ++i)
he[i] = ht[sa[i]];
}
} sa;
int n, lg2[MAXN], st[MAXN][LOGN];
char str[MAXN];
int lcs(int l, int r) {
if (l == r)
return INF;
int k = lg2[r - l];
return min(st[l + 1][k], st[r - (1 << k) + 1][k]);
}
signed main() {
read(n);
scanf("%s", str + 1);
sa.init(n, str);
for (int i = 2; i <= n; ++i)
lg2[i] = (i & (i - 1)) ? lg2[i - 1] : lg2[i - 1] + 1;
for (int i = 1; i <= n; ++i)
st[i][0] = sa.he[i];
for (int j = 1; j < LOGN; ++j) {
for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
st[i][j] = min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
}
}
for (int i = 1; i <= n; ++i) {
int mn = sa.he[i] + 1, mx = n - sa.sa[i] + 1;
for (int j = mn; j <= mx; ++j) {
int l = i, r = n, x = i;
while (l <= r) {
int mid = (l + r) >> 1;
if (lcs(i, mid) >= j)
l = mid + 1, x = mid;
else
r = mid - 1;
}
if (x != i)
write(x - i + 1), putchar('\n');
}
}
return 0;
}