yaoxi-std 的博客

$\text{开}\mathop{\text{卷}}\limits^{ju\check{a}n}\text{有益}$

0%

P4070 [SDOI2016] 生成魔咒

P4070 [SDOI2016] 生成魔咒

题面

题目链接

解法

注意到每次加入一个字符$s[i]$后,增加的不同子串数量就是$i-lcs$,其中$lcs$是子串$s[1\cdots i]$和加入前$s$中任意子串最长的最长公共后缀长度。

要求出每个前缀和其他子串的lcs,容易想到将串反转后使用后缀数组。现在问题转化为对每个$i$求出对应的$p \lt i$使得$\min\limits_{k\in(rk[p],rk[i]]\bigcup(rk[i],rk[p]]}{height[k]}$最大,显然这个$rk[p]$是$rk[i]$的前驱或者后继。

按顺序枚举$i$,用平衡树两棵线段树维护前驱后继,求出lcs取max,得到每次增加的不同子串数量,得到最终答案。

时间复杂度$O(n \log n)$。

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/**
* @file: P4070.cpp
* @author: yaoxi-std
* @url: https://www.luogu.com.cn/problem/P4070
*/
// #pragma GCC optimize ("O2")
// #pragma GCC optimize ("Ofast", "inline", "-ffast-math")
// #pragma GCC target ("avx,sse2,sse3,sse4,mmx")
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define resetIO(x) \
freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout)
#define debug(fmt, ...) \
fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__)
template <class _Tp>
inline _Tp& read(_Tp& x) {
bool sign = false;
char ch = getchar();
long double tmp = 1;
for (; !isdigit(ch); ch = getchar())
sign |= (ch == '-');
for (x = 0; isdigit(ch); ch = getchar())
x = x * 10 + (ch ^ 48);
if (ch == '.')
for (ch = getchar(); isdigit(ch); ch = getchar())
tmp /= 10.0, x += tmp * (ch ^ 48);
return sign ? (x = -x) : x;
}
template <class _Tp>
inline void write(_Tp x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar((x % 10) ^ 48);
}
const int MAXN = 1e5 + 10;
const int LOGN = 19;
const int INF = 0x3f3f3f3f3f3f3f3f;
struct SuffixArray {
int n, sa[MAXN], rk[MAXN], tp[MAXN], ht[MAXN], he[MAXN];
void radix_sort(int m) {
static int buc[MAXN];
for (int i = 0; i <= m; ++i)
buc[i] = 0;
for (int i = 1; i <= n; ++i)
buc[rk[i]]++;
for (int i = 1; i <= m; ++i)
buc[i] += buc[i - 1];
for (int i = n; i >= 1; --i)
sa[buc[rk[tp[i]]]--] = tp[i];
}
void init(int n, int* s) {
this->n = n;
int m = 1e5;
for (int i = 1; i <= n; ++i)
rk[i] = s[i], tp[i] = i;
radix_sort(m);
for (int w = 1, p = 0; p < n; m = p, w <<= 1) {
p = 0;
for (int i = 1; i <= w; ++i)
tp[++p] = n - w + i;
for (int i = 1; i <= n; ++i)
if (sa[i] > w)
tp[++p] = sa[i] - w;
radix_sort(m);
copy(rk + 1, rk + n + 1, tp + 1);
rk[sa[1]] = p = 1;
for (int i = 2; i <= n; ++i) {
if (tp[sa[i - 1]] == tp[sa[i]] && tp[sa[i - 1] + w] == tp[sa[i] + w])
rk[sa[i]] = p;
else
rk[sa[i]] = ++p;
}
}
for (int i = 1, k = 0; i <= n; ++i) {
if (k)
k--;
while (s[i + k] == s[sa[rk[i] - 1] + k])
k++;
ht[i] = k;
}
for (int i = 1; i <= n; ++i)
he[i] = ht[sa[i]];
}
} sa;
#define li (i << 1)
#define ri (i << 1) | 1
#define lson li, l, mid
#define rson ri, mid + 1, r
template <class _Update>
struct SegmentTree {
_Update upd;
int nd[MAXN * 4];
void build(int i, int l, int r, int x) {
nd[i] = x;
if (l == r)
return;
int mid = (l + r) >> 1;
build(lson, x), build(rson, x);
}
void update(int i, int l, int r, int q, int v) {
if (l == r)
return void(nd[i] = upd(nd[i], v));
int mid = (l + r) >> 1;
if (q <= mid)
update(lson, q, v);
else
update(rson, q, v);
nd[i] = upd(nd[li], nd[ri]);
}
int query(int i, int l, int r, int ql, int qr, int x) {
if (ql > qr)
return x;
if (ql <= l && r <= qr)
return nd[i];
int mid = (l + r) >> 1, ret = x;
if (ql <= mid)
ret = upd(ret, query(lson, ql, qr, x));
if (qr > mid)
ret = upd(ret, query(rson, ql, qr, x));
return ret;
}
};
struct MaxUpdate { int operator()(int x, int y) { return max(x, y); } };
struct MinUpdate { int operator()(int x, int y) { return min(x, y); } };
int n, m;
int a[MAXN], b[MAXN], rev[MAXN], lg2[MAXN], st[MAXN][LOGN];
SegmentTree<MaxUpdate> sgtpre;
SegmentTree<MinUpdate> sgtnxt;
int lcs(int l, int r) {
if (l == r)
return INF;
int k = lg2[r - l];
return min(st[l + 1][k], st[r - (1 << k) + 1][k]);
}
signed main() {
read(n), m = n;
for (int i = 1; i <= n; ++i)
read(a[i]), b[i] = a[i];
sort(b + 1, b + m + 1);
m = unique(b + 1, b + m + 1) - b - 1;
for (int i = 1; i <= n; ++i)
a[i] = lower_bound(b + 1, b + m + 1, a[i]) - b;
copy(a + 1, a + n + 1, rev + 1);
reverse(rev + 1, rev + n + 1);
sa.init(n, rev);
for (int i = 2; i <= n; ++i)
lg2[i] = (i & (i - 1)) ? lg2[i - 1] : lg2[i - 1] + 1;
for (int i = 1; i <= n; ++i)
st[i][0] = sa.he[i];
for (int j = 1; j < LOGN; ++j) {
for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
st[i][j] = min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
}
}
sgtpre.build(1, 1, n, 0);
sgtnxt.build(1, 1, n, n + 1);
int cur = 0;
for (int i = 1; i <= n; ++i) {
int t = sa.rk[n - i + 1];
int p1 = sgtpre.query(1, 1, n, 1, t, 0);
int p2 = sgtnxt.query(1, 1, n, t, n, n + 1);
cur += i - max(lcs(p1, t), lcs(t, p2));
sgtpre.update(1, 1, n, t, t);
sgtnxt.update(1, 1, n, t, t);
write(cur), putchar('\n');
}
return 0;
}