1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp& x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } const int MAXN = 5e5 + 10; const int INF = 0x3f3f3f3f3f3f3f3f; const int MOD = 1e9 + 7; int add(int x, int y); int binom2(int x); enum MatrixType { XY, YX, XT, YT, TX, TY, TT }; struct Matrix { int (*a)[7]; Matrix() { a = new int[7][7] {}; } Matrix(int n) { a = new int[7][7] { { binom2(n - 2), 1, n - 2, 0, 0, n - 2, 0 }, { 1, binom2(n - 2), 0, n - 2, n - 2, 0, 0 }, { 1, 0, binom2(n - 2) + n - 3, 1, 1, 0, n - 3 }, { 0, 1, 1, binom2(n - 2) + n - 3, 0, 1, n - 3 }, { 0, 1, 1, 0, binom2(n - 2) + n - 3, 1, n - 3 }, { 1, 0, 0, 1, 1, binom2(n - 2) + n - 3, n - 3 }, { 0, 0, 1, 1, 1, 1, binom2(n) - 4 } }; for (int i = 0; i < 7; ++i) for (int j = 0; j < 7; ++j) a[i][j] %= MOD; } int* operator[](int i) { return a[i]; } friend Matrix operator*(const Matrix& lhs, const Matrix& rhs) { Matrix ret; for (int i = 0; i < 7; ++i) for (int j = 0; j < 7; ++j) for (int k = 0; k < 7; ++k) ret.a[i][j] = add(ret.a[i][j], lhs.a[i][k] * rhs.a[k][j] % MOD); return ret; } }; struct BinaryIndexTree { int c[MAXN], n; void init(int m) { n = m; } void add(int x, int v) { for (int i = x; i <= n; i += (i & -i)) c[i] = ::add(c[i], v); } int sum(int x) { int ret = 0; for (int i = x; i; i -= (i & -i)) ret = ::add(ret, c[i]); return ret; } }; int n, k, a[MAXN], p[7], lt[3], gt[3], sum[3]; BinaryIndexTree ltr[3]; inline int add(int x, int y) { x += y; return x >= MOD ? x - MOD : x; } inline int mul(int x, int y) { return x * y % MOD; } int binom2(int x) { return x * (x - 1) / 2 % MOD; } int qpow(int x, int y) { int ret = 1; for (; y; y >>= 1, x = x * x % MOD) if (y & 1) ret = ret * x % MOD; return ret; } Matrix qpow(Matrix x, int y) { Matrix ret; for (int i = 0; i < 7; ++i) ret.a[i][i] = 1; for (; y; y >>= 1, x = x * x) if (y & 1) ret = ret * x; return ret; } signed main() { read(n), read(k); for (int i = 1; i <= n; ++i) read(a[i]); Matrix base(n), ret; ret[0][XY] = 1; ret = ret * qpow(base, k); for (int i = 0; i < 7; ++i) p[i] = ret[0][i]; ltr[0].init(n); ltr[1].init(n); ltr[2].init(n); int ans = 0, inv = qpow(n - 2, MOD - 2); for (int i = 1; i <= n; ++i) { for (int j = 0; j < 3; ++j) { lt[j] = ltr[j].sum(a[i]); gt[j] = sum[j] - lt[j]; } ans = add(ans, mul(p[0], gt[0])); ans = add(ans, mul(p[1], lt[0])); ans = add(ans, mul(p[2], add(mul(gt[2], inv), mul(lt[1], inv)))); ans = add(ans, mul(p[3], add(mul(lt[0], mul(i - 2, inv)), mul(gt[0], mul(n - i, inv))))); ans = add(ans, mul(p[4], add(mul(gt[1], inv), mul(lt[2], inv)))); ans = add(ans, mul(p[5], add(mul(gt[0], mul(i - 2, inv)), mul(lt[0], mul(n - i, inv))))); ltr[0].add(a[i], 1); ltr[1].add(a[i], i - 1); ltr[2].add(a[i], n - i - 1); sum[0] = add(sum[0], 1); sum[1] = add(sum[1], i - 1); sum[2] = add(sum[2], n - i - 1); } ans = add(ans, mul(p[6], mul(binom2(n), qpow(2, MOD - 2)))); write(ans), putchar('\n'); return 0; }
|