1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp& x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } const int MAXN = 1 << 19; const int INF = 0x3f3f3f3f3f3f3f3f; const int MOD = 998244353; namespace maths { int add(int x, int y) { x += y; return x >= MOD ? x - MOD : x; } int sub(int x, int y) { x -= y; return x < 0 ? x + MOD : x; } int qpow(int x, int y, int p = MOD) { int ret = 1; for (; y; y >>= 1, x = x * x % p) if (y & 1) ret = ret * x % p; return ret; } int inverse(int x, int p = MOD) { return qpow(x, p - 2, p); } template <class _Tp> void change(_Tp* f, int len) { static int rev[MAXN] = {}; for (int i = 0; i < len; ++i) { rev[i] = rev[i >> 1] >> 1; if (i & 1) rev[i] |= len >> 1; } for (int i = 0; i < len; ++i) if (i < rev[i]) swap(f[i], f[rev[i]]); } void ntt(int* f, int len, int on) { change(f, len); for (int h = 2; h <= len; h <<= 1) { int gn = qpow(3, (MOD - 1) / h); for (int j = 0; j < len; j += h) { int g = 1; for (int k = j; k < j + h / 2; ++k) { int u = f[k], t = g * f[k + h / 2] % MOD; f[k] = add(u, t), f[k + h / 2] = sub(u, t); g = g * gn % MOD; } } } if (on == -1) { reverse(f + 1, f + len); int inv = inverse(len); for (int i = 0; i < len; ++i) f[i] = f[i] * inv % MOD; } } struct polynomial { int a[MAXN], len; polynomial() { memset(a, 0, sizeof(a)); } polynomial(int len) : len(len) { memset(a, 0, sizeof(a)); } int operator[](int i) const { return a[i]; } int& operator[](int i) { return a[i]; } polynomial operator*(const polynomial& o) const { static int f[MAXN], g[MAXN]; polynomial ret(len + o.len - 1); int slen = 1; while (slen < ret.len) slen <<= 1; copy(a, a + slen, f); copy(o.a, o.a + slen, g); ntt(f, slen, 1), ntt(g, slen, 1); for (int i = 0; i < slen; ++i) f[i] = f[i] * g[i] % MOD; ntt(f, slen, -1); copy(f, f + slen, ret.a); return ret; } polynomial inverse() const { static int tmp[MAXN] = {}; int slen = 1; while (slen < len) slen <<= 1; polynomial ret(slen); ret[0] = maths::inverse(a[0]); for (int h = 2; h <= slen; h <<= 1) { copy(a, a + h, tmp); fill(tmp + h, tmp + h + h, 0); ntt(tmp, h + h, 1); ntt(ret.a, h + h, 1); for (int i = 0; i < h + h; ++i) ret[i] = ret[i] * (2 - tmp[i] * ret[i] % MOD + MOD) % MOD; ntt(ret.a, h + h, -1); fill(ret.a + h, ret.a + h + h, 0); } return ret; } polynomial derivation() const { polynomial ret(len - 1); for (int i = 0; i < len - 1; ++i) ret[i] = a[i + 1] * (i + 1) % MOD; return ret; } polynomial integral() const { polynomial ret(len + 1); for (int i = 1; i <= len; ++i) ret[i] = a[i - 1] * maths::inverse(i) % MOD; return ret; } polynomial ln() const { return (derivation() * inverse()).integral(); } }; }; using namespace maths; int n; polynomial a; signed main() { read(n); for (int i = 0; i < n; ++i) read(a[i]); a.len = n; a = a.ln(); for (int i = 0; i < n; ++i) write(a[i]), putchar(" \n"[i == n - 1]); return 0; }
|