1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp& x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } const int MAXN = 1 << 17; const int INF = 0x3f3f3f3f3f3f3f3f; const int MOD = 998244353; namespace maths { int add(int x, int y) { x += y; return x >= MOD ? x - MOD : x; } int sub(int x, int y) { x -= y; return x < 0 ? x + MOD : x; } int qpow(int x, int y, int p = MOD) { int ret = 1; for (; y; y >>= 1, x = x * x % p) if (y & 1) ret = ret * x % p; return ret; } template <class _Tp> void change(_Tp* f, int len) { static int rev[MAXN] = {}; for (int i = 0; i < len; ++i) { rev[i] = rev[i >> 1] >> 1; if (i & 1) rev[i] |= len >> 1; } for (int i = 0; i < len; ++i) if (i < rev[i]) swap(f[i], f[rev[i]]); } void ntt(int* f, int len, int on) { change(f, len); for (int h = 2; h <= len; h <<= 1) { int gn = qpow(3, (MOD - 1) / h); for (int j = 0; j < len; j += h) { int g = 1; for (int k = j; k < j + h / 2; ++k) { int u = f[k], t = g * f[k + h / 2] % MOD; f[k] = add(u, t), f[k + h / 2] = sub(u, t); g = g * gn % MOD; } } } if (on == -1) { reverse(f + 1, f + len); int inv = qpow(len, MOD - 2); for (int i = 0; i < len; ++i) f[i] = f[i] * inv % MOD; } } void poly_multiply(const int* f, int n, const int* g, int m, int* ans) { static int tf[MAXN] = {}, tg[MAXN] = {}; int len = 1; while (len < n + m - 1) len <<= 1; copy(f, f + n, tf); fill(tf + n, tf + len, 0); copy(g, g + m, tg); fill(tg + m, tg + len, 0); fill(ans, ans + len, 0); ntt(tf, len, 1); ntt(tg, len, 1); for (int i = 0; i < len; ++i) tf[i] = tf[i] * tg[i] % MOD; ntt(tf, len, -1); copy(tf, tf + n + m - 1, ans); } void poly_inverse(const int* f, int n, int* ans) { static int tmp[MAXN] = {}; int len = 1; while (len < n) len <<= 1; fill(ans, ans + len + len, 0); ans[0] = qpow(f[0], MOD - 2); for (int h = 2; h <= len; h <<= 1) { copy(f, f + h, tmp); fill(tmp + h, tmp + h + h, 0); ntt(tmp, h + h, 1); ntt(ans, h + h, 1); for (int i = 0; i < h + h; ++i) ans[i] = ans[i] * (2 - ans[i] * tmp[i] % MOD + MOD) % MOD; ntt(ans, h + h, -1); fill(ans + h, ans + h + h, 0); } } void poly_derivation(const int* f, int n, int* ans) { for (int i = 0; i < n - 1; ++i) ans[i] = f[i + 1] * (i + 1) % MOD; ans[n - 1] = 0; } void poly_integral(const int* f, int n, int* ans) { for (int i = n; i >= 1; --i) ans[i] = f[i - 1] * qpow(i, MOD - 2) % MOD; ans[0] = 0; } void poly_ln(const int* f, int n, int* ans) { static int tf[MAXN] = {}, tg[MAXN] = {}; poly_derivation(f, n, tf); poly_inverse(f, n, tg); poly_multiply(tf, n - 1, tg, n, ans); poly_integral(ans, n - 1, ans); fill(ans + n, ans + n + n, 0); } void poly_exp(const int* f, int n, int* ans) { static int tf[MAXN] = {}, tg[MAXN] = {}; ans[0] = 1, ans[1] = 0; for (int h = 2; h <= (n << 1); h <<= 1) { poly_ln(ans, h, tf); for (int i = 0; i < h; ++i) tf[i] = add((i == 0), sub(f[i], tf[i])); copy(ans, ans + h, tg); poly_multiply(tf, h, tg, h, ans); } } }; using namespace maths; int n, m, a[MAXN], ta[MAXN], tb[MAXN], tc[MAXN], ts[MAXN]; int fac[MAXN], inv[MAXN]; void solve(int l, int r, int cl, int cr) { if (l + 1 == r) { ts[cl] = 1, ts[cl + 1] = sub(0, a[l]); return; } int mid = (l + r) >> 1, cmid = (cl + cr) >> 1; solve(l, mid, cl, cmid); solve(mid, r, cmid, cr); poly_multiply(ts + cl, cmid - cl, ts + cmid, cr - cmid, ts + cl); } signed main() { read(n), read(m); for (int i = 1; i <= n; ++i) read(a[i]); fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i % MOD; inv[n] = qpow(fac[n], MOD - 2); for (int i = n - 1; ~i; --i) inv[i] = inv[i + 1] * (i + 1) % MOD; int len = 1; while (len <= n) len <<= 1; for (int i = 0; i < len; ++i) ta[i] = qpow(i + 1, m + m) * inv[i] % MOD; for (int i = 0; i < len; ++i) tb[i] = qpow(i + 1, m) * inv[i] % MOD; poly_inverse(tb, len, tc); poly_multiply(ta, len, tc, len, ta); poly_ln(tb, len, tc); copy(tc, tc + len, tb); solve(0, len, 0, len << 1); poly_ln(ts, len, ts); for (int i = 1; i <= n; ++i) ts[i] = sub(0, ts[i] * i % MOD); ts[0] = n; fill(ts + n, ts + len, 0); for (int i = 0; i < len; ++i) { ta[i] = ta[i] * ts[i] % MOD; tb[i] = tb[i] * ts[i] % MOD; } poly_exp(tb, len, tc); poly_multiply(ta, len, tc, len, ta); int ans = fac[n - 2] * ta[n - 2] % MOD; for (int i = 1; i <= n; ++i) ans = ans * a[i] % MOD; write(ans), putchar('\n'); return 0; }
|