1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp& x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } const int MAXN = 55; const int MAXM = 120; const int MAXK = 1 << 17; const int INF = 0x3f3f3f3f3f3f3f3f; const double EPS = 1e-6; const double PI = acos(-1); namespace maths { using comp = complex<double>; template <class _Tp> void change(_Tp* f, int len) { static int rev[MAXK] = {}; for (int i = 0; i < len; ++i) { rev[i] = rev[i >> 1] >> 1; if (i & 1) rev[i] |= len >> 1; } for (int i = 0; i < len; ++i) if (i < rev[i]) swap(f[i], f[rev[i]]); } void fft(comp* f, int len, int on) { change(f, len); for (int h = 2; h <= len; h <<= 1) { comp wn(cos(2 * PI / h), sin(2 * PI / h)); for (int j = 0; j < len; j += h) { comp w(1, 0); for (int k = j; k < j + h / 2; ++k) { comp u = f[k], t = w * f[k + h / 2]; f[k] = u + t, f[k + h / 2] = u - t; w *= wn; } } } if (on == -1) { reverse(f + 1, f + len); for (int i = 0; i < len; ++i) f[i] /= len; } } }; using namespace maths; struct Edge { int u, v, w; double p[MAXK]; Edge() {} Edge(int _u, int _v, int _w) : u(_u), v(_v), w(_w) {} } edge[MAXM]; int n, m, t, x; int dis[MAXN][MAXN]; double f[MAXM][MAXK], dp[MAXN][MAXK]; void calc(int l, int r) { static comp tf[MAXK], tg[MAXK]; int mid = (l + r) >> 1; int lx = r - mid, rx = r - l, len = 1; while (len <= lx + rx) len <<= 1; for (int e = 1; e <= m; ++e) { Edge& ed = edge[e]; for (int i = 0; i < len; ++i) tf[i] = tg[i] = 0; for (int i = 0; i < lx; ++i) tf[i] = dp[ed.v][i + mid + 1]; for (int i = 0; i < rx; ++i) tg[i] = ed.p[rx - i]; fft(tf, len, 1), fft(tg, len, 1); for (int i = 0; i < len; ++i) tf[i] *= tg[i]; fft(tf, len, -1); for (int i = l; i <= mid; ++i) f[e][i] += tf[i + rx - mid - 1].real(); } } void solve(int l, int r) { static comp tf[MAXK], tg[MAXK]; if (l == r) { for (int i = 1; i <= m; ++i) dp[edge[i].u][l] = min(dp[edge[i].u][l], f[i][l] + edge[i].w); return; } int mid = (l + r) >> 1; solve(mid + 1, r); calc(l, r); solve(l, mid); } signed main() { read(n), read(m), read(t), read(x); memset(dis, 0x3f, sizeof(dis)); for (int i = 1; i <= n; ++i) dis[i][i] = 0; for (int i = 1; i <= m; ++i) { Edge& ed = edge[i]; read(ed.u), read(ed.v), read(ed.w); dis[ed.u][ed.v] = min(dis[ed.u][ed.v], ed.w); for (int j = 1; j <= t; ++j) read(ed.p[j]) /= 1e5; } for (int k = 1; k <= n; ++k) for (int i = 1; i <= n; ++i) for (int j = 1; j <= n; ++j) if (dis[i][j] > dis[i][k] + dis[k][j]) dis[i][j] = dis[i][k] + dis[k][j]; for (int i = 1; i < n; ++i) for (int j = 0; j <= t; ++j) dp[i][j] = INF; for (int i = 1; i <= n; ++i) for (int j = t + 1; j <= t + t; ++j) dp[i][j] = dis[i][n] + x; calc(0, t + t); solve(0, t); printf("%.10lf\n", dp[1][0]); return 0; }
|