1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp& x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } const int MAXN = 1 << 16; const int LOGN = 60; const int BLOC = 1 << 15; const int INF = 0x3f3f3f3f3f3f3f3f; const int MOD = 1e9 + 7; const long double PI = acos(-1); namespace maths { using comp = complex<long double>; int add(int x, int y) { x += y; return x >= MOD ? x - MOD : x; } int sub(int x, int y) { x -= y; return x < 0 ? x + MOD : x; } int qpow(int x, int y, int p = MOD) { int ret = 1; for (; y; y >>= 1, x = x * x % p) if (y & 1) ret = ret * x % p; return ret; } template <class _Tp> void change(_Tp* f, int len) { static int rev[MAXN]; for (int i = rev[0] = 0; i < len; ++i) { rev[i] = rev[i >> 1] >> 1; if (i & 1) rev[i] |= len >> 1; } for (int i = 0; i < len; ++i) if (i < rev[i]) swap(f[i], f[rev[i]]); } void fft(comp* f, int len, int on) { change(f, len); for (int h = 2; h <= len; h <<= 1) { comp wn(cos(2 * PI / h), sin(2 * PI / h)); for (int j = 0; j < len; j += h) { comp w(1, 0); for (int k = j; k < j + h / 2; ++k) { comp u = f[k], t = w * f[k + h / 2]; f[k] = u + t, f[k + h / 2] = u - t; w *= wn; } } } if (on == -1) { reverse(f + 1, f + len); for (int i = 0; i < len; ++i) f[i] /= len; } } struct poly { const static int len = 1 << 16; int a[MAXN]; int operator[](int i) const { return a[i]; } int& operator[](int i) { return a[i]; } poly operator*(const poly& rhs) const { poly ret; for (int i = 0; i < len; ++i) ret[i] = a[i] * rhs[i] % MOD; return ret; } poly operator^(const poly& rhs) const { static comp f1[MAXN], f2[MAXN], f3[MAXN]; poly ret; for (int i = 0; i < len; ++i) { f1[i] = comp(a[i] / BLOC, a[i] % BLOC); f2[i] = comp(a[i] / BLOC, -a[i] % BLOC); f3[i] = comp(rhs[i] / BLOC, rhs[i] % BLOC); } fft(f1, len, 1), fft(f2, len, 1), fft(f3, len, 1); for (int i = 0; i < len; ++i) { f1[i] *= f3[i]; f2[i] *= f3[i]; } fft(f1, len, -1), fft(f2, len, -1); for (int i = 0; i < len; ++i) { int axay = (int)round((f1[i].real() + f2[i].real()) / 2) % MOD; int bxby = (int)round((f2[i].real() - f1[i].real()) / 2) % MOD; int axby = (int)round((f1[i].imag() + f2[i].imag()) / 2) % MOD; int aybx = (int)round((f1[i].imag() - f2[i].imag()) / 2) % MOD; ret[i] = (axay * BLOC % MOD * BLOC + (axby + aybx) * BLOC % MOD + bxby) % MOD; } return ret; } }; }; using namespace maths; int n, k; poly fac, inv, lhs, rhs, ans; poly pw2[LOGN], dp[LOGN]; int binom(int x, int y) { return fac[x] * inv[y] % MOD * inv[x - y] % MOD; } signed main() { read(n), read(k); for (int i = fac[0] = 1; i <= k; ++i) fac[i] = fac[i - 1] * i % MOD; inv[k] = qpow(fac[k], MOD - 2); for (int i = k - 1; ~i; --i) inv[i] = inv[i + 1] * (i + 1) % MOD; for (int i = pw2[0][0] = 1; i <= k; ++i) pw2[0][i] = pw2[0][i - 1] * 2 % MOD; for (int i = 1; i <= k; ++i) dp[0][i] = 1; for (int i = 1; i < LOGN; ++i) { pw2[i] = pw2[i - 1] * pw2[i - 1]; lhs = dp[i - 1] * inv * pw2[i - 1]; rhs = dp[i - 1] * inv; dp[i] = (lhs ^ rhs) * fac; } ans[0] = 1; for (int i = 0; i < LOGN; ++i) { if (!((n >> i) & 1)) continue; lhs = ans * inv * pw2[i]; rhs = dp[i] * inv; ans = (lhs ^ rhs) * fac; } int tot = 0; for (int i = 0; i <= k; ++i) tot = add(tot, ans[i] * binom(k, i) % MOD); write(tot), putchar('\n'); return 0; }
|