1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp& x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } const int MAXK = 1 << 17; const int LOGN = 30; const int INF = 0x3f3f3f3f3f3f3f3f; const int MOD = 998244353; namespace maths { int add(int x, int y) { x += y; return x >= MOD ? x - MOD : x; } int sub(int x, int y) { x -= y; return x < 0 ? x + MOD : x; } int qpow(int x, int y, int p = MOD) { int ret = 1; for (; y; y >>= 1, x = x * x % p) if (y & 1) ret = ret * x % p; return ret; } template <class _Tp> void change(_Tp* f, int len) { static int rev[MAXK]; for (int i = rev[0] = 0; i < len; ++i) { rev[i] = rev[i >> 1] >> 1; if (i & 1) rev[i] |= len >> 1; } for (int i = 0; i < len; ++i) if (i < rev[i]) swap(f[i], f[rev[i]]); } void ntt(int* f, int len, int on) { change(f, len); for (int h = 2; h <= len; h <<= 1) { int gn = qpow(3, (MOD - 1) / h); for (int j = 0; j < len; j += h) { int g = 1; for (int k = j; k < j + h / 2; ++k) { int u = f[k], t = g * f[k + h / 2] % MOD; f[k] = add(u, t), f[k + h / 2] = sub(u, t); g = g * gn % MOD; } } } if (on == -1) { reverse(f + 1, f + len); int inv = qpow(len, MOD - 2); for (int i = 0; i < len; ++i) f[i] = f[i] * inv % MOD; } } }; using namespace maths; int n, k; struct knap { struct node { int dp[MAXK]; node() { memset(dp, 0, sizeof(dp)); } node(const node& o) { memcpy(dp, o.dp, sizeof(dp)); } node operator+(const node& rhs) const { node ret; for (int i = 0; i <= k; ++i) ret.dp[i] = add(dp[i], rhs.dp[i]); return ret; } node operator*(const node& rhs) const { static int f1[MAXK], f2[MAXK]; node ret; int len = 1; while (len < k + k + 2) len <<= 1; for (int i = 0; i < len; ++i) f1[i] = dp[i], f2[i] = rhs.dp[i]; ntt(f1, len, 1), ntt(f2, len, 1); for (int i = 0; i < len; ++i) f1[i] = f1[i] * f2[i] % MOD; ntt(f1, len, -1); for (int i = 0; i <= k; ++i) ret.dp[i] = f1[i]; return ret; } node operator<<(int rhs) const { node ret; for (int i = rhs; i <= k; ++i) ret.dp[i] = dp[i - rhs]; return ret; } } dp[3]; knap operator*(const knap& rhs) const { knap ret; ret.dp[0] = dp[0] * rhs.dp[0] + ((dp[1] * rhs.dp[1]) << 1); ret.dp[1] = dp[0] * rhs.dp[1] + ((dp[1] * rhs.dp[2]) << 1); ret.dp[2] = dp[1] * rhs.dp[1] + ((dp[2] * rhs.dp[2]) << 1); return ret; } }; knap dp[LOGN], ans; signed main() { read(n), read(k); ans.dp[0].dp[0] = 1; dp[0].dp[0].dp[0] = dp[0].dp[0].dp[1] = 1; dp[0].dp[1].dp[0] = 1; for (int i = 1; i < LOGN; ++i) dp[i] = dp[i - 1] * dp[i - 1]; for (int i = 0; i < LOGN; ++i) if ((n >> i) & 1) ans = ans * dp[i]; for (int i = 1; i <= k; ++i) write(ans.dp[0].dp[i]), putchar(" \n"[i == k]); return 0; }
|