yaoxi-std 的博客

$\text{开}\mathop{\text{卷}}\limits^{ju\check{a}n}\text{有益}$

0%

P4013 数字梯形问题

P4013 数字梯形问题

题面

题目链接

解法

三次询问分别拆点构建网络流即可。

费用流不能在残余网络上加边重新跑,否则无法保证最大/最小费用。

数组应当开$20 \times 40$而不是$20 \times 20$。

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/**
* @file: P4013.cpp
* @author: yaoxi-std
* @url: https://www.luogu.com.cn/problem/P4013
*/
// #pragma GCC optimize ("O2")
// #pragma GCC optimize ("Ofast", "inline", "-ffast-math")
// #pragma GCC target ("avx,sse2,sse3,sse4,mmx")
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define resetIO(x) \
freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout)
#define debug(fmt, ...) \
fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__)
template <class _Tp>
inline _Tp& read(_Tp& x) {
bool sign = false;
char ch = getchar();
long double tmp = 1;
for (; !isdigit(ch); ch = getchar())
sign |= (ch == '-');
for (x = 0; isdigit(ch); ch = getchar())
x = x * 10 + (ch ^ 48);
if (ch == '.')
for (ch = getchar(); isdigit(ch); ch = getchar())
tmp /= 10.0, x += tmp * (ch ^ 48);
return sign ? (x = -x) : x;
}
template <class _Tp>
inline void write(_Tp x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar((x % 10) ^ 48);
}
template <const int MAXV, const int MAXE>
struct MCMF {
const int INF = 0x3f3f3f3f3f3f3f3f;
struct Edge {
int v, flow, cost;
} edge[MAXE * 2];
int tot = 1, head[MAXV], nxt[MAXE];
int flow, cost, cur[MAXV], dis[MAXV];
bool vis[MAXV];
void addedge(int u, int v, int flow, int cost) {
edge[++tot] = {v, flow, cost};
nxt[tot] = head[u], head[u] = tot;
edge[++tot] = {u, 0, -cost};
nxt[tot] = head[v], head[v] = tot;
}
bool spfa(int s, int t) {
fill(vis, vis + MAXV, 0);
fill(dis, dis + MAXV, -INF);
queue<int> que;
que.push(s);
dis[s] = 0;
vis[s] = 1;
while (!que.empty()) {
int u = que.front();
que.pop();
vis[u] = 0;
for (int i = head[u]; i; i = nxt[i]) {
int v = edge[i].v;
if (edge[i].flow && dis[v] < dis[u] + edge[i].cost) {
dis[v] = dis[u] + edge[i].cost;
if (!vis[v]) {
que.push(v);
vis[v] = 1;
}
}
}
}
return dis[t] != -INF;
}
int augment(int u, int t, int mx) {
if (u == t || mx == 0)
return mx;
vis[u] = 1;
int ret = 0;
for (int &i = cur[u]; i; i = nxt[i]) {
int v = edge[i].v;
if (vis[v] || dis[v] != dis[u] + edge[i].cost)
continue;
int tmp = augment(v, t, min(mx, edge[i].flow));
cost += tmp * edge[i].cost;
mx -= tmp, ret += tmp;
edge[i].flow -= tmp, edge[i ^ 1].flow += tmp;
if (mx == 0)
break;
}
vis[u] = 0;
return ret;
}
pair<int, int> mcmf(int s, int t) {
while (spfa(s, t)) {
copy(head, head + MAXV, cur);
flow += augment(s, t, INF);
}
return make_pair(flow, cost);
}
};
const int MAXN = 45;
const int MAXV = 4e3 + 10;
const int MAXE = 4e4 + 10;
const int INF = 0x3f3f3f3f3f3f3f3f;
int m, n, s, t, num, a[MAXN][MAXN], pt[MAXN][MAXN][2];
MCMF<MAXV, MAXE> nt[3];
signed main() {
read(m), read(n);
s = ++num, t = ++num;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j < m + i; ++j) {
read(a[i][j]);
pt[i][j][0] = ++num;
pt[i][j][1] = ++num;
}
}
for (int w = 0; w < 3; ++w) {
for (int i = 1; i <= m; ++i)
nt[w].addedge(s, pt[1][i][0], 1, 0);
for (int i = 1; i < m + n; ++i)
nt[w].addedge(pt[n][i][1], t, INF, 0);
for (int i = 1; i <= n; ++i)
for (int j = 1; j < m + i; ++j)
nt[w].addedge(pt[i][j][0], pt[i][j][1], 1, a[i][j]);
for (int i = 1; i < n; ++i) {
for (int j = 1; j < m + i; ++j) {
nt[w].addedge(pt[i][j][1], pt[i + 1][j][0], 1, 0);
nt[w].addedge(pt[i][j][1], pt[i + 1][j + 1][0], 1, 0);
}
}
}
for (int w = 1; w < 3; ++w) {
for (int i = 1; i <= n; ++i)
for (int j = 1; j < m + i; ++j)
nt[w].addedge(pt[i][j][0], pt[i][j][1], INF, a[i][j]);
}
for (int w = 2; w < 3; ++w) {
for (int i = 1; i < n; ++i) {
for (int j = 1; j < m + i; ++j) {
nt[w].addedge(pt[i][j][1], pt[i + 1][j][0], INF, 0);
nt[w].addedge(pt[i][j][1], pt[i + 1][j + 1][0], INF, 0);
}
}
}
for (int w = 0; w < 3; ++w)
write(nt[w].mcmf(s, t).second), putchar('\n');
return 0;
}