1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp& x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } template <const int MAXV, const int MAXE> struct Dinic { const int INF = 0x3f3f3f3f3f3f3f3f; struct Edge { int v, flow; } edge[MAXE * 2]; int tot = 1, flow = 0; int head[MAXV], lev[MAXV], cur[MAXV], nxt[MAXE * 2]; void addedge(int u, int v, int flow) { edge[++tot] = {v, flow}; nxt[tot] = head[u], head[u] = tot; edge[++tot] = {u, 0}; nxt[tot] = head[v], head[v] = tot; } bool bfs(int s, int t) { fill(lev, lev + MAXV, -1); queue<int> que; que.push(s); lev[s] = 0; while (!que.empty()) { int u = que.front(); que.pop(); for (int i = head[u]; i; i = nxt[i]) { int v = edge[i].v; if (edge[i].flow && lev[v] == -1) { lev[v] = lev[u] + 1; que.push(v); } } } return lev[t] != -1; } int augment(int u, int t, int mx) { if (u == t || mx == 0) return mx; int ret = 0; for (int &i = cur[u]; i; i = nxt[i]) { int v = edge[i].v; if (lev[v] != lev[u] + 1) continue; int tmp = augment(v, t, min(mx, edge[i].flow)); mx -= tmp, ret += tmp; edge[i].flow -= tmp, edge[i ^ 1].flow += tmp; if (mx == 0) break; } return ret; } int maxflow(int s, int t) { while (bfs(s, t)) { copy(head, head + MAXV, cur); flow += augment(s, t, INF); } return flow; } }; const int MAXN = 205; const int MAXV = 4e4 + 10; const int MAXE = 4e5 + 10; const int INF = 0x3f3f3f3f3f3f3f3f; const int DX[8] = {-2, -2, -1, -1, 1, 1, 2, 2}; const int DY[8] = {-1, 1, -2, 2, -2, 2, -1, 1}; int n, m, s, t, num, mp[MAXN][MAXN], pt[MAXN][MAXN]; Dinic<MAXV, MAXE> network; signed main() { read(n), read(m); for (int i = 1; i <= m; ++i) { int x, y; read(x), read(y); mp[x][y] = true; } s = ++num, t = ++num; for (int i = 1; i <= n; ++i) for (int j = 1; j <= n; ++j) pt[i][j] = ++num; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (mp[i][j]) continue; if ((i ^ j) & 1) network.addedge(s, pt[i][j], 1); else network.addedge(pt[i][j], t, 1); for (int k = 0; k < 8; ++k) { int x = i + DX[k]; int y = j + DY[k]; if (x < 1 || y < 1 || x > n || y > n) continue; if (mp[x][y]) continue; if ((i ^ j) & 1) network.addedge(pt[i][j], pt[x][y], INF); } } } int ans = n * n - m - network.maxflow(s, t); write(ans), putchar('\n'); return 0; }
|