1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp& x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } const int MAXN = 1e4 + 10; const int MAXM = 5e4 + 10; const int INF = 0x3f3f3f3f3f3f3f3f; struct Dinic { struct Edge { int v, flow; } edge[MAXM]; int tot = 1, flow = 0; int head[MAXN], nxt[MAXM], lev[MAXN], cur[MAXN]; void addedge(int u, int v, int flow) { edge[++tot] = {v, flow}; nxt[tot] = head[u], head[u] = tot; edge[++tot] = {u, 0}; nxt[tot] = head[v], head[v] = tot; } bool bfs(int s, int t) { fill(lev, lev + MAXN, -1); queue<int> que; que.push(s); lev[s] = 0; while (!que.empty()) { int u = que.front(); que.pop(); for (int i = head[u]; i; i = nxt[i]) { int v = edge[i].v; if (edge[i].flow && lev[v] == -1) { lev[v] = lev[u] + 1; que.push(v); } } } return lev[t] != -1; } int augment(int u, int t, int mx) { if (u == t || mx == 0) return mx; int ret = 0; for (int &i = cur[u]; i; i = nxt[i]) { int v = edge[i].v; if (lev[v] != lev[u] + 1) continue; int tmp = augment(v, t, min(mx, edge[i].flow)); mx -= tmp, ret += tmp; edge[i].flow -= tmp, edge[i ^ 1].flow += tmp; if (mx == 0) break; } return ret; } int maxflow(int s, int t) { while (bfs(s, t)) { copy(head, head + MAXN, cur); flow += augment(s, t, INF); } return flow; } }; int n, m, s, t, num, a[MAXN][MAXN], pt[MAXN][MAXN]; Dinic network; signed main() { read(n), read(m); for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) read(a[i][j]); s = ++num, t = ++num; for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) pt[i][j] = ++num; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= m; ++j) { if ((i ^ j) & 1) network.addedge(s, pt[i][j], a[i][j]); else network.addedge(pt[i][j], t, a[i][j]); if (((i ^ j) & 1) == 0) continue; if (i > 1) network.addedge(pt[i][j], pt[i - 1][j], INF); if (j > 1) network.addedge(pt[i][j], pt[i][j - 1], INF); if (i < n) network.addedge(pt[i][j], pt[i + 1][j], INF); if (j < m) network.addedge(pt[i][j], pt[i][j + 1], INF); } } int ans = 0; for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) ans += a[i][j]; ans -= network.maxflow(s, t); write(ans), putchar('\n'); return 0; }
|