yaoxi-std 的博客

$\text{开}\mathop{\text{卷}}\limits^{ju\check{a}n}\text{有益}$

0%

P2770 航空路线问题

P2770 航空路线问题

题面

题目链接

解法

$O(n^3)$的$dp$显然(bushi

考虑网络流的做法。首先每个点经过一次就想到拆点,然后按照原图连边,从$1$到$n$的最大流$\ge 2$就有解。

需要注意测试点$2$是$1$到$n$有连边且只有$1 \to n \to 1$这种走法的,但其实可以不用特判解决,输出路径时如果剩余流量$=+\infty-2$时多跑一次即可(具体见代码)。

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/**
* @file: P2770.cpp
* @author: yaoxi-std
* @url: https://www.luogu.com.cn/problem/P2770
*/
// #pragma GCC optimize ("O2")
// #pragma GCC optimize ("Ofast", "inline", "-ffast-math")
// #pragma GCC target ("avx,sse2,sse3,sse4,mmx")
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define resetIO(x) \
freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout)
#define debug(fmt, ...) \
fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__)
template <class _Tp>
inline _Tp& read(_Tp &x) {
bool sign = false;
char ch = getchar();
long double tmp = 1;
for (; !isdigit(ch); ch = getchar())
sign |= (ch == '-');
for (x = 0; isdigit(ch); ch = getchar())
x = x * 10 + (ch ^ 48);
if (ch == '.')
for (ch = getchar(); isdigit(ch); ch = getchar())
tmp /= 10.0, x += tmp * (ch ^ 48);
return sign ? (x = -x) : x;
}
template <class _Tp>
inline void write(_Tp x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar((x % 10) ^ 48);
}
const int MAXN = 505;
const int MAXM = 2e4 + 10;
const int MAXS = 20;
const int INF = 0x3f3f3f3f3f3f3f3f;
struct Dinic {
struct Edge {
int v, flow, cost;
} edge[MAXM];
int tot = 1, flow = 0, cost = 0;
int head[MAXN], nxt[MAXM], dis[MAXN], cur[MAXN];
bool vis[MAXN];
void addedge(int u, int v, int flow, int cost) {
edge[++tot] = {v, flow, cost};
nxt[tot] = head[u], head[u] = tot;
edge[++tot] = {u, 0, -cost};
nxt[tot] = head[v], head[v] = tot;
}
bool spfa(int s, int t) {
fill(vis, vis + MAXN, 0);
fill(dis, dis + MAXN, -INF);
queue<int> que;
que.push(s);
dis[s] = 0, vis[s] = 1;
while (!que.empty()) {
int u = que.front();
que.pop(), vis[u] = 0;
for (int i = head[u]; i; i = nxt[i]) {
int v = edge[i].v;
if (edge[i].flow && dis[v] < dis[u] + edge[i].cost) {
dis[v] = dis[u] + edge[i].cost;
if (!vis[v])
que.push(v), vis[v] = 1;
}
}
}
return dis[t] != -INF;
}
int augment(int u, int t, int mx) {
if (u == t || mx == 0)
return mx;
vis[u] = 1;
int ret = 0;
for (int &i = cur[u]; i; i = nxt[i]) {
int v = edge[i].v;
if (vis[v] || dis[v] != dis[u] + edge[i].cost)
continue;
int tmp = augment(v, t, min(mx, edge[i].flow));
cost += tmp * edge[i].cost;
mx -= tmp, ret += tmp;
edge[i].flow -= tmp, edge[i ^ 1].flow += tmp;
if (mx == 0)
break;
}
vis[u] = 0;
return ret;
}
int mcmf(int s, int t) {
while (spfa(s, t)) {
copy(head, head + MAXN, cur);
flow += augment(s, t, INF);
}
return flow;
}
};
int n, m, s, t, num, pt[MAXN][2];
char buf[MAXS], str[MAXN][MAXS];
Dinic network;
void print(int u, int on) {
if (u == n) {
if (on == 1)
printf("%s\n", str[u]);
return;
}
if (on == 1)
printf("%s\n", str[u]);
for (int i = network.head[pt[u][1]]; i; i = network.nxt[i])
if (network.edge[i].flow == INF - 1)
print((network.edge[i].v - 1) >> 1, on);
if (on == -1)
printf("%s\n", str[u]);
}
signed main() {
read(n), read(m);
s = ++num, t = ++num;
for (int i = 1; i <= n; ++i) {
scanf("%s", str[i]);
pt[i][0] = ++num;
pt[i][1] = ++num;
}
network.addedge(s, pt[1][1], 2, 0);
network.addedge(pt[n][0], t, 2, 0);
for (int i = 1; i <= n; ++i)
network.addedge(pt[i][0], pt[i][1], 1, 0);
for (int i = 1; i <= m; ++i) {
int u, v;
scanf("%s", buf);
for (int j = 1; j <= n; ++j)
if (strcmp(buf, str[j]) == 0)
u = j;
scanf("%s", buf);
for (int j = 1; j <= n; ++j)
if (strcmp(buf, str[j]) == 0)
v = j;
if (u > v)
swap(u, v);
network.addedge(pt[u][1], pt[v][0], INF, 1);
}
if (network.mcmf(s, t) != 2)
return puts("No Solution!"), 0;
write(network.cost), putchar('\n');
for (int i = network.head[pt[1][1]], on = 1; i; i = network.nxt[i]) {
if (network.edge[i].flow < INF - 2)
continue;
for (int j = network.edge[i].flow; j < INF; ++j, on = -on) {
if (on == 1)
printf("%s\n", str[1]);
print((network.edge[i].v - 1) >> 1, on);
if (on == -1)
printf("%s\n", str[1]);
}
}
return 0;
}