yaoxi-std 的博客

$\text{开}\mathop{\text{卷}}\limits^{ju\check{a}n}\text{有益}$

0%

P4016 负载平衡问题

P4016 负载平衡问题

题面

解法

显然有贪心解法,但为了练习费用流选择使用网络流解法。

第一次写$spfa$和费用流,没想到会出现这么多问题。。。

有几个要注意的点:

  1. 费用流建反边的$cost$是原来的$cost$的相反数,即需要add(u, v, c, f), add(v, u, -c, 0);
  2. 计算流量的方式和普通网络流相同,但是计算总$cost$是每次加上edge.cost * flow不要忘记乘上$cost$,用全局变量存$cost$会好写一些。
  3. 由于费用流的边权可能$\le 0$,所以必须用$spfa$而无法使用$dijkstra$,并且$dfs$增广时必须开$vis$数组防止无限递归
  4. (这应该算是个小$tip$)网络流$tot$一开始清空成$1$可以不需要再调用init函数,也不需要再把$head$清空成$-1$。

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/**
* @file: P4016.cpp
* @author: yaoxi-std
* @url: https://www.luogu.com.cn/problem/P4016
*/
// #pragma GCC optimize ("O2")
// #pragma GCC optimize ("Ofast", "inline", "-ffast-math")
// #pragma GCC target ("avx,sse2,sse3,sse4,mmx")
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define resetIO(x) \
freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout)
#define debug(fmt, ...) \
fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__)
template <class _Tp>
inline _Tp& read(_Tp &x) {
bool sign = false;
char ch = getchar();
long double tmp = 1;
for (; !isdigit(ch); ch = getchar())
sign |= (ch == '-');
for (x = 0; isdigit(ch); ch = getchar())
x = x * 10 + (ch ^ 48);
if (ch == '.')
for (ch = getchar(); isdigit(ch); ch = getchar())
tmp /= 10.0, x += tmp * (ch ^ 48);
return sign ? (x = -x) : x;
}
template <class _Tp>
inline void write(_Tp x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar((x % 10) ^ 48);
}
const int MAXN = 150;
const int MAXM = 1e3 + 10;
const int INF = 0x3f3f3f3f3f3f3f3f;
struct Dinic {
struct Edge {
int v, flow, cost;
} edge[MAXM];
int tot = 1, flow = 0, cost = 0;
int head[MAXN], nxt[MAXM], dis[MAXN], cur[MAXN];
bool vis[MAXN];
void addedge(int u, int v, int flow, int cost) {
edge[++tot] = {v, flow, cost};
nxt[tot] = head[u], head[u] = tot;
edge[++tot] = {u, 0, -cost};
nxt[tot] = head[v], head[v] = tot;
}
bool spfa(int s, int t) {
fill(vis, vis + MAXN, 0);
fill(dis, dis + MAXN, INF);
queue<int> que;
que.push(s);
dis[s] = 0, vis[s] = 1;
while (!que.empty()) {
int u = que.front();
que.pop(), vis[u] = 0;
for (int i = head[u]; i; i = nxt[i]) {
int v = edge[i].v;
if (edge[i].flow && dis[v] > dis[u] + edge[i].cost) {
dis[v] = dis[u] + edge[i].cost;
if (!vis[v])
que.push(v), vis[v] = 1;
}
}
}
return dis[t] != INF;
}
int augment(int u, int t, int mx) {
if (u == t || mx == 0)
return mx;
vis[u] = 1;
int ret = 0;
for (int &i = cur[u]; i; i = nxt[i]) {
int v = edge[i].v;
if (vis[v] || dis[v] != dis[u] + edge[i].cost)
continue;
int tmp = augment(v, t, min(mx, edge[i].flow));
cost += tmp * edge[i].cost;
mx -= tmp, ret += tmp;
edge[i].flow -= tmp, edge[i ^ 1].flow += tmp;
if (mx == 0)
break;
}
vis[u] = 0;
return ret;
}
int mcmf(int s, int t) {
while (spfa(s, t)) {
copy(head, head + MAXN, cur);
flow += augment(s, t, INF);
}
return flow;
}
};
int n, a[MAXN];
Dinic nf;
signed main() {
read(n);
int num = 0;
for (int i = 1; i <= n; ++i)
read(a[i]), num += a[i];
num /= n;
int s = n + 1, t = n + 2;
for (int i = 1; i <= n; ++i) {
if (a[i] > num)
nf.addedge(s, i, a[i] - num, 0);
if (a[i] < num)
nf.addedge(i, t, num - a[i], 0);
nf.addedge(i, i % n + 1, INF, 1);
nf.addedge(i % n + 1, i, INF, 1);
}
nf.mcmf(s, t);
write(nf.cost), putchar('\n');
return 0;
}