yaoxi-std 的博客

$\text{开}\mathop{\text{卷}}\limits^{ju\check{a}n}\text{有益}$

0%

P4721 【模版】分治FFT 题解

P4721 【模版】分治FFT 题解

题面

题目链接

解法

由于$f_i$依赖于$f_j(1\le j\lt i)$,所以考虑分治计算,每次先计算左半段,将贡献加到右半段后继续递归计算右半段。

思考如何计算贡献。发现题目中$fi=\sum\limits{j=1}^{i}{f_{i-j}g_j}$的方式很像多项式乘法,区间$[l,mid]$对$f_i(mid \lt i \le r)$的贡献就是$F(x) = f(x) \times g(x)$的$F(i)$,用$NTT$进行计算即可。

时间复杂度$O(n \log^2 n)$(似乎比多项式求逆要慢不少)。

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/**
* @file: P4721.cpp
* @author: yaoxi-std
* @url: https://www.luogu.com.cn/problem/P4721
*/
// #pragma GCC optimize ("O2")
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define resetIO(x) \
freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout)
#define debug(fmt, ...) \
fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__)
template <class _Tp>
inline _Tp& read(_Tp &x) {
bool sign = false;
char ch = getchar();
long double tmp = 1;
for (; !isdigit(ch); ch = getchar())
sign |= (ch == '-');
for (x = 0; isdigit(ch); ch = getchar())
x = x * 10 + (ch ^ 48);
if (ch == '.')
for (ch = getchar(); isdigit(ch); ch = getchar())
tmp /= 10.0, x += tmp * (ch ^ 48);
return sign ? (x = -x) : x;
}
template <class _Tp>
inline void write(_Tp x) {
if (x < 0)
putchar('-'), x = -x;
if (x > 9)
write(x / 10);
putchar((x % 10) ^ 48);
}
const int MAXN = 1 << 18;
const int INFL = 0x3f3f3f3f3f3f3f3f;
const int MOD = 998244353;
const int G0 = 3;
namespace maths {
int qpow(int x, int y) {
int ret = 1;
for (; y; y >>= 1, x = x * x % MOD)
if (y & 1)
ret = ret * x % MOD;
return ret;
}
void change(int *f, int len) {
static int rev[MAXN];
for (int i = rev[0] = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (i & 1)
rev[i] |= len >> 1;
}
for (int i = 0; i < len; ++i)
if (i < rev[i])
swap(f[i], f[rev[i]]);
}
void ntt(int *f, int len, int on) {
change(f, len);
for (int h = 2; h <= len; h <<= 1) {
int gn = qpow(G0, (MOD - 1) / h);
for (int j = 0; j < len; j += h) {
int g = 1;
for (int k = j; k < j + h / 2; ++k) {
int u = f[k], t = g * f[k + h / 2] % MOD;
f[k] = (u + t + MOD) % MOD;
f[k + h / 2] = (u - t + MOD) % MOD;
g = g * gn % MOD;
}
}
}
if (on == -1) {
reverse(f + 1, f + len);
int inv = qpow(len, MOD - 2);
for (int i = 0; i < len; ++i)
f[i] = f[i] * inv % MOD;
}
}
}
using maths::ntt;
int n, a[MAXN], b[MAXN], f[MAXN], g[MAXN];
void solve(int l, int r) {
if (l >= r)
return;
int len = r - l + 1;
int mid = (l + r) >> 1;
solve(l, mid);
copy(f + l, f + mid + 1, a);
copy(g, g + len, b);
fill(a + len / 2, a + len, 0);
ntt(a, len, 1), ntt(b, len, 1);
for (int i = 0; i < len; ++i)
a[i] = a[i] * b[i] % MOD;
ntt(a, len, -1);
for (int i = mid + 1; i <= r; ++i)
f[i] = (f[i] + a[i - l]) % MOD;
solve(mid + 1, r);
}
signed main() {
read(n);
for (int i = 1; i < n; ++i)
read(g[i]);
int len = f[0] = 1;
while (len < n)
len <<= 1;
solve(0, len - 1);
for (int i = 0; i < n; ++i)
write(f[i]), putchar(" \n"[i == n - 1]);
return 0;
}