1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp &x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } using comp = complex<long double>; const int MAXN = 1 << 20; const int INFL = 0x3f3f3f3f3f3f3f3f; const long double MPI = acos(-1);
namespace solve1 { int mod; void init(int mod) { solve1::mod = mod; } int qmul(int x, int y, int p = mod) { int ret = 0; for (; y; y >>= 1, x = (x + x) % p) if (y & 1) ret = (ret + x) % p; return ret; } int qpow(int x, int y, int p = mod) { int ret = 1; for (; y; y >>= 1, x = qmul(x, x, p)) if (y & 1) ret = qmul(ret, x, p); return ret; } void change(int *f, int len) { static int rev[MAXN]; for (int i = rev[0] = 0; i < len; ++i) { rev[i] = rev[i >> 1] >> 1; if (i & 1) rev[i] |= len >> 1; } for (int i = 0; i < len; ++i) if (i < rev[i]) swap(f[i], f[rev[i]]); } void ntt(int *f, int len, int on) { change(f, len); for (int h = 2; h <= len; h <<= 1) { int gn = qpow(3, (mod - 1) / h); for (int j = 0; j < len; j += h) { int g = 1; for (int k = j; k < j + h / 2; ++k) { int u = f[k], t = g * f[k + h / 2] % mod; f[k] = (u + t + mod) % mod; f[k + h / 2] = (u - t + mod) % mod; g = g * gn % mod; } } } if (on == -1) { reverse(f + 1, f + len); int inv = qpow(len, mod - 2); for (int i = 0; i < len; ++i) f[i] = f[i] * inv % mod; } } const int MODS[3] = {998244353, 1004535809, 469762049}; const int INV1 = qpow(MODS[0], MODS[1] - 2, MODS[1]); const int INV2 = qpow(MODS[0] * MODS[1] % MODS[2], MODS[2] - 2, MODS[2]); int n, m, p, a[3][MAXN], b[3][MAXN], ans[3][MAXN]; int crt(int a1, int a2, int a3) { int t = (a2 - a1 + MODS[1]) % MODS[1] * INV1 % MODS[1] * MODS[0] + a1; return ((a3 - t % MODS[2] + MODS[2]) % MODS[2] * INV2 % MODS[2] * (MODS[0] * MODS[1] % p) % p + t) % p; } signed main() { read(n), read(m), read(p); for (int i = 0, x; i <= n; ++i) read(x) %= p, a[0][i] = a[1][i] = a[2][i] = x; for (int i = 0, x; i <= m; ++i) read(x) %= p, b[0][i] = b[1][i] = b[2][i] = x; int len = 1; while (len < n + m + 1) len <<= 1; for (int k = 0; k < 3; ++k) { init(MODS[k]); ntt(a[k], len, 1), ntt(b[k], len, 1); for (int i = 0; i < len; ++i) ans[k][i] = a[k][i] * b[k][i] % mod; ntt(ans[k], len, -1); } for (int i = 0; i <= n + m; ++i) write(crt(ans[0][i], ans[1][i], ans[2][i])), putchar(" \n"[i == n + m]); return 0; } }
namespace solve2 { void change(comp *f, int len) { static int rev[MAXN]; for (int i = rev[0] = 0; i < len; ++i) { rev[i] = rev[i >> 1] >> 1; if (i & 1) rev[i] |= len >> 1; } for (int i = 0; i < len; ++i) if (i < rev[i]) swap(f[i], f[rev[i]]); } void fft(comp *f, int len, int on) { change(f, len); for (int h = 2; h <= len; h <<= 1) { comp wn(cos(2 * MPI / h), sin(2 * MPI / h)); for (int j = 0; j < len; j += h) { comp w(1, 0); for (int k = j; k < j + h / 2; ++k) { comp u = f[k], t = w * f[k + h / 2]; f[k] = u + t; f[k + h / 2] = u - t; w *= wn; } } } if (on == -1) { reverse(f + 1, f + len); for (int i = 0; i < len; ++i) f[i] /= len; } } const int BLOC = 1 << 15; int n, m, p, a[MAXN], b[MAXN], ans[MAXN]; comp p1[MAXN], p2[MAXN], q[MAXN], t1[MAXN], t2[MAXN]; signed main() { read(n), read(m), read(p); for (int i = 0; i <= n; ++i) read(a[i]) %= p; for (int i = 0; i <= m; ++i) read(b[i]) %= p; int len = 1; while (len < n + m + 1) len <<= 1; for (int i = 0; i < len; ++i) p1[i] = comp(a[i] / BLOC, a[i] % BLOC); for (int i = 0; i < len; ++i) p2[i] = comp(a[i] / BLOC, -a[i] % BLOC); for (int i = 0; i < len; ++i) q[i] = comp(b[i] / BLOC, b[i] % BLOC); fft(p1, len, 1), fft(p2, len, 1), fft(q, len, 1); for (int i = 0; i < len; ++i) t1[i] = p1[i] * q[i]; for (int i = 0; i < len; ++i) t2[i] = p2[i] * q[i]; fft(t1, len, -1), fft(t2, len, -1); for (int i = 0; i < len; ++i) { int a1a2 = ((int)((t1[i].real() + t2[i].real()) / 2 + 0.5)) % p; int a1b2 = ((int)((t2[i].imag() + t1[i].imag()) / 2 + 0.5)) % p; int a2b1 = ((int)((t1[i].imag() - t2[i].imag()) / 2 + 0.5)) % p; int b1b2 = ((int)((t2[i].real() - t1[i].real()) / 2 + 0.5)) % p; ans[i] = (a1a2 * (1ll << 30) % p + (a1b2 + a2b1) * (1ll << 15) % p + b1b2) % p; } for (int i = 0; i <= n + m; ++i) write(ans[i]), putchar(" \n"[i == n + m]); return 0; } } signed main() { return solve2::main(); }
|