1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#include <bits/stdc++.h> using namespace std; #define int long long #define resetIO(x) \ freopen(#x ".in", "r", stdin), freopen(#x ".out", "w", stdout) #define debug(fmt, ...) \ fprintf(stderr, "[%s:%d] " fmt "\n", __FILE__, __LINE__, ##__VA_ARGS__) template <class _Tp> inline _Tp& read(_Tp &x) { bool sign = false; char ch = getchar(); long double tmp = 1; for (; !isdigit(ch); ch = getchar()) sign |= (ch == '-'); for (x = 0; isdigit(ch); ch = getchar()) x = x * 10 + (ch ^ 48); if (ch == '.') for (ch = getchar(); isdigit(ch); ch = getchar()) tmp /= 10.0, x += tmp * (ch ^ 48); return sign ? (x = -x) : x; } template <class _Tp> inline void write(_Tp x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar((x % 10) ^ 48); } using pii = pair<int, int>; const int MAXN = 5e4 + 10; const int INFL = 0x3f3f3f3f3f3f3f3f; struct node { int t, s1, s2; }; int n, m, k, p, s[MAXN]; pii a[MAXN]; node b[MAXN * 2]; unordered_map<int, int> mp; int add(int x, int y) { x += y; return x >= p ? x - p : x; } struct matrix { int a[2][2]; matrix() { a[0][0] = a[0][1] = a[1][0] = a[1][1] = 0; } matrix(int x) { a[0][0] = a[1][1] = x, a[0][1] = a[1][0] = 0; } matrix(int s1, int s2) { a[0][0] = s2, a[0][1] = 1, a[1][0] = s1, a[1][1] = 0; } matrix operator*(const matrix &o) const { matrix ret; for (int i = 0; i < 2; ++i) for (int j = 0; j < 2; ++j) for (int k = 0; k < 2; ++k) ret.a[i][j] = add(ret.a[i][j], a[i][k] * o.a[k][j] % p); return ret; } friend matrix operator^(matrix x, int y) { matrix ret = 1; for (; y; y >>= 1, x = x * x) if (y & 1) ret = ret * x; return ret; } }; #define li (i << 1) #define ri (i << 1) | 1 #define lson li, l, mid #define rson ri, mid + 1, r struct segment_tree { matrix nd[MAXN * 4]; void pushup(int i) { nd[i] = nd[li] * nd[ri]; } void update(int i, int l, int r, int p, matrix v) { if (l == r) return void(nd[i] = v); int mid = (l + r) >> 1; if (p <= mid) update(lson, p, v); else update(rson, p, v); pushup(i); } matrix query(int i, int l, int r, int ql, int qr) { if (ql <= l && r <= qr) return nd[i]; int mid = (l + r) >> 1; matrix ret = 1; if (ql <= mid) ret = ret * query(lson, ql, qr); if (qr > mid) ret = ret * query(rson, ql, qr); return ret; } }; segment_tree tr; signed main() { read(k), read(p); read(n); for (int i = 0; i < n; ++i) read(s[i]); read(m); for (int i = 1; i <= m; ++i) read(a[i].first), read(a[i].second); sort(a + 1, a + m + 1); int cnt = 0; for (int i = 1; i <= m; ++i) { if (i > 1 && a[i].first + 1 == a[i - 1].first + 2) b[++cnt] = {a[i].first + 1, a[i - 1].second, a[i].second}; if (i == 1 || a[i].first + 1 != a[i - 1].first + 2) b[++cnt] = {a[i].first + 1, s[(a[i].first - 1) % n], a[i].second}; if (i == m || a[i].first + 2 != a[i + 1].first + 1) b[++cnt] = {a[i].first + 2, a[i].second, s[(a[i].first + 1) % n]}; } while (cnt && b[cnt].t > k) --cnt; for (int i = 0; i < n; ++i) tr.update(1, 0, n - 1, i, matrix(s[(i + n - 2) % n], s[(i + n - 1) % n])); if (k == 0 || k == 1) { return write(k % p), putchar('\n'), 0; } else if (k < n) { matrix ret; ret.a[0][0] = 1; return write((ret * tr.query(1, 0, n - 1, 2, k)).a[0][0]), putchar('\0'), 0; } matrix sum = tr.query(1, 0, n - 1, 0, n - 1); matrix base = tr.query(1, 0, n - 1, 2, n - 1); int pos = 1, pre = 0; while (pos <= cnt) { int cur = b[pos].t / n; base = base * (sum ^ (cur - pre - 1)), pre = cur; int cl = max(2ll, cur * n), cr = min(k, cur * n + n - 1), lst = pos; while (pos <= cnt && cl <= b[pos].t && b[pos].t <= cr) { tr.update(1, 0, n - 1, b[pos].t % n, matrix(b[pos].s1, b[pos].s2)); ++pos; } base = base * tr.query(1, 0, n - 1, cl % n, cr % n); for (int j = lst; j < pos; ++j) tr.update(1, 0, n - 1, b[j].t % n, matrix(s[(b[j].t - 2) % n], s[(b[j].t - 1) % n])); } int cur = k / n; if (pre < cur) { base = base * (sum ^ (cur - pre - 1)); for (int i = cur * n; i <= k; ++i) base = base * matrix(s[(i - 2) % n], s[(i - 1) % n]); } matrix ret; ret.a[0][0] = 1; ret = ret * base; write(ret.a[0][0]), putchar('\n'); return 0; }
|